

LINUX KERNEL HACKING WORKSHOP

Tuba Yavuz
Associate Professor
ECE Department

FICS & Nelms Institute
University of Florida
tuba@ece.ufl.edu

mailto:tuba@ece.ufl.edu

Outline

• What is this workshop about?

• What is a device driver & how do drivers work in the Linux
Kernel?

• Which system APIs get involved?

• Hands-on Activity: Writing & Testing a Character-special Device
Driver

• Wrap-up

• Questions & Answers

Why the Linux Kernel?

• It is very popular; powering a wide range of systems from
mobile phones, routers, and edge devices to personal
computers, high-end servers, and the cloud

• It is open-source & one of the most complex piece of software
on earth

• It has a very active community

Why hacking the Linux Kernel?

• Hacking can be performed for a good or a bad cause

• Ethical hacking (the good) is about finding vulnerabilities in
a system and responsibly disclosing them to the developers &
the vendors.
• Changing the functionality of a system by adding new components.

• Unethical hacking (the bad) is about finding vulnerabilities in a
system and exploiting them to inflict harm on the users of that
system.

Importance of system programming

• Every single computing platform relies on some system code
• (real-time) operating system/kernel, libraries, etc.

• Testing system code is more challenging than applications

• Learning system APIs and their side-effects takes time

• Vulnerabilities & bugs in system code may have a high cost

• Computer science and engineering curriculums could be
improved to provide more exposure to system programming

Research and Educational Interest

• I received my Ph.D. in computer science from the University of California, Santa Barbara
in 2004.

• I work in the intersection of formal methods, program analysis, and system security.

• I am an Associate Professor & the director of the System Reliability Lab at the University
of Florida.

• My long-term career goal is to develop scalable techniques for detecting reliability and
security issues in real-world system code & use these techniques in developing a
workforce empowered by system programming and/or system analysis skills.

• As an ethical hacker and with the help of my research tools, I was able to detect
vulnerabilities in the Linux kernel and in other systems code.

• I hope this workshop can provide some inspiration about learning more about system
programming and getting involved in system development and/or analysis.

Outline

• What is this workshop about?

• What is a device driver & how do drivers work in the
Linux Kernel?

• Which system APIs get involved?

• Hands-on Activity: Writing & Testing a Character-special Device
Driver

• Wrap-up

• Questions & Answers

What is an Operating System (OS)/Kernel?

USER APPLICATIONS

/dev/input0 /dev/mouse0 /dev/console /dev/usb/lp1 /dev/sda3 /dev/cdrom

OPERATING SYSTEM/KERNEL

Manages the system resources and allows user processes
request and use these resources while relying on certain

security, reliability, and performance guarantees

User space

Kernel space

How do User Procs. & Kernel communicate ?

USER APPLICATIONS

/dev/input0 /dev/mouse0 /dev/console /dev/usb/lp1 /dev/sda3 /dev/cdrom

SYSTEM CALL INTERFACE (exec, fork, open, close, read, write, …)

OPERATING SYSTEM SERVICES

SYSTEM CALL WRAPPER LIBRARY

User space

Kernel space

What is a device driver?

• A device driver is a piece of software that includes functionality
to initialize, configure, and perform Input/Output with a device
or a class of devices.

• Device drivers typically form one of the lower-level software
layer within the operating system or the kernel.

• Some device drivers get statically linked with the kernel and
others get loaded at runtime when the device gets connected to
the host device the first time.

What is a device in the Linux Kernel?

• A device is a special file in the Linux Kernel

• Like regular files, they appear in the file system hierarchy

• Unlike regular files, they do not store data on the file system
• The data flows into and/or from the actual device

• The device driver is responsible for communicating with the
device
• It receives the data from the device

• It sends data to the device

Device Drivers in the Linux Kernel

MEMORY
MANAGER

PROCESS
SCHEDULER

VIRTUAL FILE SYSTEM

DEVICE DRIVERS

/dev/input0 /dev/mouse0 /dev/console /dev/usb/lp1 /dev/sda3 /dev/cdrom

SYSTEM CALL INTERFACE (sys_open, sys_read,…)

USER APPLICATIONS
SYSTEM CALL WRAPPER LIBRARY (open, read,…)

User space

Kernel space

Device Drivers & Subsystems in the Linux Kernel

MEMORY
MANAGER

PROCESS
SCHEDULER

CHAR SPECIAL
DEVICE DRIVERS

INDIVIDUAL FILE
SYSTEMS

BLOCK SPECIAL
DEVICE DRIVERS

/dev/input0 /dev/mouse0 /dev/console /dev/usb/lp1 /dev/sda3 /dev/cdrom

INPUT
LAYER

SYSTEM CALL INTERFACE (sys_open, sys_read, ..)

VIRTUAL FILE SYSTEM

USER APPLICATIONS
SYSTEM CALL WRAPPER LIBRARY (open, read,…)

User space

Kernel space

Outline

• What is this workshop about?

• What is a device driver & how do drivers work in the Linux
Kernel?

• Which system APIs get involved?

• Hands-on Activity: Writing & Testing a Character-special Device
Driver

• Wrap-up

• Questions & Answers

Writing a device driver

• A device driver is a kernel module with well defined entry
points

• An init function that gets executed at module load time

• An exit function that gets executed at module unload time

• Other functions that serve as entry point to some kernel layer

• Uses kernel API to allocate memory, to print to kernel logs, to
register data structures, and so on.

Entry points of a kernel module

KERNEL
MODULE

driver_init

driver_exit

insmod utility
(loads a module)

rmmod utility
(unloads a module)

Entry points of a device driver

DEVICE
DRIVER
(KERNEL

MODULE)

driver_init

driver_exit

driver_open

driver_release

driver_write

driver_read

insmod utility
(loads a module)

rmmod utility
(unloads a module)

VIRTUAL
FILE

SYSTEM

open

close

write

read

APIs used in a character-special device driver

• Printing messages to the kernel logs

• Allocating dynamic memory in the kernel

• Copy data to & from user space

• VFS data structures

• Reserving device (major & minor) numbers

• Creating device nodes

• Registering a character-special device

Printing messages to the kernel logs

• In user space we may use printf to display messages on the
terminal

• In kernel space we use printk to write messages to the kernel
logs (NOT to the terminal!)

• We can check what is in the kernel logs from user space using
the dmesg command (-T option to pretty print the time info):
• $ dmesg -T

How printk works

• printk(LEVEL Message);

Level Name Description

0 KERN_EMERG An emergency condition; the
system is probably dead

1 KERN_ALERT A problem that requires
immediate attention

2 KERN_CRIT A critical condition

3 KERN_ERR An error

4 KERN_WARNING A warning (default log level, if
not specified)

5 KERN_NOTICE A normal, but perhaps
noteworthy, condition

6 KERN_INFO An informational message

7 KERN_DEBUG A debug message typically
superfluous

LEVEL <
CURRENT

PRINTK LEVEL?

Message written
to the kernel

logs

Message
ignored!

yesno

How to check the current printk level

Level Name Description

0 KERN_EMERG An emergency condition; the
system is probably dead

1 KERN_ALERT A problem that requires
immediate attention

2 KERN_CRIT A critical condition

3 KERN_ERR An error

4 KERN_WARNING A warning (default log level, if
not specified)

5 KERN_NOTICE A normal, but perhaps
noteworthy, condition

6 KERN_INFO An informational message

7 KERN_DEBUG A debug message typically
superfluous

$ cat /proc/sys/kernel/printk
4 4 1 7

current
printk
level

printk(KERN_ERR ``Err message from kernel
space!\’’);

printk(KERN_WARNING ``Warning message
from kernel space!\’’);

Kernel Logs

LEVEL <
CURRENT

PRINTK LEVEL?

How to change the current printk level

Level Name Description

0 KERN_EMERG An emergency condition; the
system is probably dead

1 KERN_ALERT A problem that requires
immediate attention

2 KERN_CRIT A critical condition

3 KERN_ERR An error

4 KERN_WARNING A warning (default log level, if
not specified)

5 KERN_NOTICE A normal, but perhaps
noteworthy, condition

6 KERN_INFO An informational message

7 KERN_DEBUG A debug message typically
superfluous

$ echo 8 > /proc/sys/kernel/printk
(You may need sudo access!)
$ cat /proc/sys/kernel/printk
8 4 1 7

current
printk
level

printk(KERN_ERR ``Err message from kernel
space!\’’);

printk(KERN_WARNING ``Warning message
from kernel space!\’’);

Kernel Logs

LEVEL <
CURRENT

PRINTK LEVEL?

Allocating dynamic memory in the kernel

• In kernel space, we can use kmalloc to allocate dynamic memory.

• Similar to malloc, the first argument specifies the size in bytes

• Unlike malloc, kmalloc has a 2nd argument to specify the context it is
executed in. For our activity, we will use GFP_KERNEL.

• Example: char *buf = kmalloc(100, GFP_KERNEL);
• size = 100 bytes
• GFP_KERNEL means if needed the current process can be put to sleep until

memory becomes available

• The allocated memory can be accessed by the kernel only & is
physically contiguous.

Copy data to & from user space

• Kernel code can copy data to & from user space buffers

• Since we cannot trust addresses provided from user space when a system
call is issued, we need help from the kernel to check if it is safe to use
such addresses.

• To safely copy data from kernel space to user space:
• unsigned long copy_to_user (void __user * to, const void * from, unsigned long n);
• return value: 0 on success

• To safely copy data from user space to kernel space:
• unsigned long copy_from_user (void * to, const void __user * from, unsigned long

n);
• return value: 0 on success

Virtual File System (VFS) data structures

f_op
offset

owner
open
release
read
write

f_opstruct file

struct cdevstruct file_operations

i_cdev
FILE DESCRIPTOR TABLE
(per process)

0 … i …

Represents an
open file within a
user process

Represents file specific
implementation of the
file operations

Standard
input

struct inode

Represents a file in the
file system and stores
metadata about the file

Represents a
character-special
device

Int tux_filedesc = open(“/dev/tux”, …);
read(tux_filedesc , …); or write(tux_filedesc , …);

User process opens
a device to do I/O

A file descriptor no is a handle to a file/device.
Once a device is opened, we can use it to
read/write the file/device.

Major & minor numbers

• The kernel uniquely identifies a device using a combination of
the major and minor numbers
• The major number represents the device driver

• The minor number represents the device supported by a device driver

• dev_t devno = MKDEV(major, minor)

• MAJOR(devno), MINOR(devno)

Reserving device (major & minor) numbers

int register_chrdev_region(dev_t first, unsigned int count, char *name)
• first: the first device no that’s registered
• count: number of device no’s registered
• name: device name

• Example
• major = 500, minor = 0, count = 2
• register_chrdev_region(MKDEV(500, 0), 2, “tuxdriver”);
• if successul, two device nos are registered for driver tuxdriver:

• MKDEV(500, 0)

• MKDEV(500,1)

Creating device nodes

• Once we know the device number(s) to use, we can create the
device nodes on the file system

• To create device nodes from user space:

device node name
character-special
device

major
number

minor
number

$ mknod /dev/tux c 500 0

Before After

dev

sda1

input0

tux

dev

sda1

input0

Registering a character-special device

• First a cdev data structure needs to be created and initialized:
• cdev_alloc(): returns a pointer to struct cdev

• Then cdev must be initialized to point to the file operations:
• cdev_init(struct cdev *, struct file_operations *);

• To register it with the kernel, we also need the device number:
• cdev_add(struct cdev *, dev_t first, int count);

• When we are done, we will recycle it:
• cdev_del(struct cdev *);

Outline

• What is this workshop about?

• What is a device driver & how do drivers work in the Linux
Kernel?

• Which system APIs get involved?

• Hands-on Activity: Writing & Testing a Character-special
Device Driver

• Wrap-up

• Questions & Answers

This is what we are going to do…

USER APPLICATIONS

MEMORY
MANAGER

PROCESS
SCHEDULER

VIRTUAL FILE SYSTEM

CHAR SPECIAL
DEVICE DRIVERS

(tuxdrv)

INDIVIDUAL FILE
SYSTEMS

BLOCK SPECIAL
DEVICE DRIVERS

/dev/input0
/dev/mouse0 /dev/console /dev/sda3 /dev/cdrom /dev/block/f1

HelloDriver.c

/dev/tux

Putting all major steps together

DEVICE
DRIVER
(KERNEL

MODULE)

tux_init

tux_exit

tux_open

tux_release

tux_write

tux_read

Step 1: Implement the device driver

Step 2: Compiling the device driver Step 3: Loading the device driver

Step 4: Creating the device node Step 5: Testing the driver using shell
commands

Step 7: Hacking the driver to cause a
Kernel Panic

Step 6: Implementing a user space
program to test the driver

Step 0: Prepare a virtual machine
instance

Hands-on Activity, Step 0.a

• Install VirtualBox from https://www.virtualbox.org/

• Create a virtual machine (VM) Ubuntu instance.

• You will need to download the .iso file for an Ubuntu version
(latest one is recommended) on to your host machine.

• You can find the iso files from
https://ubuntu.com/download/desktop .When you try to run the
virtual machine instance for the first time, you will be asked for
the .iso file for installing Ubuntu.

https://www.virtualbox.org/
https://ubuntu.com/download/desktop

Hands-on Activity, Step 0.b

Once you have the VM instance ready, install the following
software on your VM if you do not already have the make & gcc:

a.make (sudo apt install make)
b.gcc (sudo apt install gcc)

Hands-on Activity, Step 0.c

You will need to use sudo when executing most of the
commands, e.g., sudo command …

If you do not have sudo access on your VM you might instead
use su to enter the root mode once and execute all commands
without worrying about using sudo:

$ su
#root:user> command …

Putting all major steps together

DEVICE
DRIVER
(KERNEL

MODULE)

tux_init

tux_exit

tux_open

tux_release

tux_write

tux_read

Step 1: Implement the device driver

Step 2: Compiling the device driver Step 3: Loading the device driver

Step 4: Creating the device node Step 5: Testing the driver using shell
commands

Step 7: Hacking the driver to cause a
Kernel Panic

Step 6: Implementing a user space
program to test the driver

Step 0: Prepare a virtual machine
instance

Hands-on Activity, Step 1

• On your VM, create a new directory on your file system and let
APATH denote the full path to this directory.

• Create tuxdriver.c under APATH using your favorite editor
• Feel free to customize the printk messages

Linux header files to include

#include <linux/module.h> /* for modules */

#include <linux/fs.h> /* file_operations */

#include <linux/uaccess.h> /* copy_(to,from)_user */

#include <linux/init.h> /* module_init, module_exit */

#include <linux/slab.h> /* kmalloc */

#include <linux/cdev.h> /* cdev utilities */

Constant & Global Variable Declarations

#define TUXDEV_NAME "tux“

#define ramdisk_size (size_t)(16)

static char *ramdisk; static dev_t first;

static unsigned int count = 1;

static int tux_major = 500, tux_minor = 0;

static struct cdev *tux_cdev;

MODULE_LICENSE(“GPL v2”);

Initialization of File Operations

static int tux_open(struct inode *inode, struct file *file);

static int tux_release(struct inode *inode, struct file *file);

static ssize_t tux_read(struct file *file, char __user *buf, size_t lbuf, loff_t *ppos);

static ssize_t tux_write(struct file *file, const char __user *buf, size_t lbuf, loff_t *ppos);

static const struct file_operations tux_fops = {

 .owner = THIS_MODULE,

 .read = tux_read,

 .write = tux_write,

 .open = tux_open,

 .release = tux_release,

};

What tuxdriver does at load time..

static int __init tux_init(void) {

 ramdisk = kmalloc(ramdisk_size, GFP_KERNEL);

 first = MKDEV(tux_major, tux_minor);

 register_chrdev_region(first, count, "tuxdriver");

 tux_cdev = cdev_alloc();

 cdev_init(tux_cdev, &tux_fops);

 cdev_add(tux_cdev, first, count);

 printk(KERN_INFO "Succeeded in registering tux cdev using major no %d and minor no %d\n",

 tux_major, tux_minor);

 return 0;

}

module_init(tux_init);

What tuxdriver does at unload time..

static void __exit tux_exit(void)

{

 cdev_del(tux_cdev);

 unregister_chrdev_region(first, count);

 printk(KERN_INFO "\ntux unregistered\n");

 kfree(ramdisk);

}

module_exit(tux_exit);

What tuxdriver does on opening/closing a tux dev

static int tux_open(struct inode *inode, struct file *file)

{

 printk(KERN_INFO " OPENING device: %s:\n\n", TUXDEV_NAME);

 return 0;

}

static int tux_release(struct inode *inode, struct file *file)

{

 printk(KERN_INFO " CLOSING device: %s:\n\n", TUXDEV_NAME);

 return 0;

}

What tuxdriver does upon writing on a tux dev

static ssize_t tux_write(struct file *file, const char __user * buf, size_t lbuf, loff_t * ppos) {

 int nbytes;

 if ((lbuf + *ppos) > ramdisk_size) {

 printk(KERN_INFO "trying to write past end of device, aborting because this is just a stub!\n");

return 0;

}

 nbytes = lbuf - copy_from_user(ramdisk + *ppos, buf, lbuf);

 *ppos += nbytes;

 printk(KERN_INFO "\n WRITING tux, nbytes=%d, pos=%d\n", nbytes, (int)*ppos);

 return nbytes;

}

What tuxdriver does upon reading from a tux dev

static ssize_t tux_read(struct file *file, char __user * buf, size_t lbuf, loff_t * ppos) {

 int nbytes;

 if ((lbuf + *ppos) > ramdisk_size) {

 printk(KERN_INFO "trying to read past end of device, aborting because this is just a stub!\n");

return 0;

}

 nbytes = lbuf - copy_to_user(buf, ramdisk + *ppos, lbuf);

 *ppos += nbytes;

 printk(KERN_INFO "\n READING from tux, nbytes=%d, pos=%d\n", nbytes, (int)*ppos);

 return nbytes;

}

Putting all major steps together

DEVICE
DRIVER
(KERNEL

MODULE)

tux_init

tux_exit

tux_open

tux_release

tux_write

tux_read

Step 1: Implement the device driver

Step 2: Compiling the device driver Step 3: Loading the device driver

Step 4: Creating the device node Step 5: Testing the driver using shell
commands

Step 7: Hacking the driver to cause a
Kernel Panic

Step 6: Implementing a user space
program to test the driver

Step 0: Prepare a virtual machine
instance

Hands-on Activity, Step 2.a

Check to see if you have the kernel header files on your system:
a. $ ls -l /usr/src/linux-headers-$(uname -r)

i. If you see some files including a Makefile, it means you
already have the linux header files. If not (No such file or
directory), get the linux header files:

ii.$ sudo apt-get install linux-headers-$(uname -r)
iii.You can execute the above ls -l command to see if this

was successful.

Hands-on Activity, Step 2.b

Create a very simple Makefile under APATH
a.You can use your favorite editor. We use the pico or nano

editor in the examples
b.pico Makefile
• You just need a single line in your Makefile:
• obj-m += tuxdriver.o
• This line says that tuxdriver.o will be one of the modules

that will be generated in the current directory.

Hands-on Activity, Step 2.c

Now, let’s use the Makefile of the kernel to build the module for
our driver. Assuming you are under APATH:

a.make -C /usr/src/linux-headers-$(uname -r) M=$PWD
modules

b.Note that -C tells the make utility to go to that directory and
use the Makefile in that directory. With M=$PWD, it tells
make to come back to the current directory to build the
modules target. Remember in the simple Makefile you
created, with the line obj-m += tuxdriver.o, we just listed
our driver as one of the kernel modules to be built.

Hands-on Activity, Step 2.d

Check if the build was successful. If you can see tuxdriver.ko
under APATH then YES:

$ ls -l tuxdriver.ko

• If you get compilation error regarding a missing kernel header
file, e.g., generated/autoconf.h then you better remove Linux
header files and reinstall
• $ sudo apt remove linux-headers-$(uname –r)

• $ sudo apt-get install linux-headers-$(uname –r)

Compiling tuxdriver on the VM

Putting all major steps together

DEVICE
DRIVER
(KERNEL

MODULE)

tux_init

tux_exit

tux_open

tux_release

tux_write

tux_read

Step 1: Implement the device driver

Step 2: Compiling the device driver Step 3: Loading the device driver

Step 4: Creating the device node Step 5: Testing the driver using shell
commands

Step 7: Hacking the driver to cause a
Kernel Panic

Step 6: Implementing a user space
program to test the driver

Step 0: Prepare a virtual machine
instance

Hands-on Activity, Step 3

Let’s load our module to the kernel
$ sudo insmod tuxdriver.ko

Installing tuxdriver on the VM

Putting all major steps together

DEVICE
DRIVER
(KERNEL

MODULE)

tux_init

tux_exit

tux_open

tux_release

tux_write

tux_read

Step 1: Implement the device driver

Step 2: Compiling the device driver Step 3: Loading the device driver

Step 4: Creating the device node Step 5: Testing the driver using shell
commands

Step 7: Hacking the driver to cause a
Kernel Panic

Step 6: Implementing a user space
program to test the driver

Step 0: Prepare a virtual machine
instance

Hands-on Activity, Step 4

Now, let’s play with our driver via the VFS Layer. We will first
create a node for our hypothetical device tux.

a.$ sudo mknod /dev/tux c 500 0
b.Check if it gets created

$ ls -l /dev/tux

Creating tux device node on the VM

Putting all major steps together

DEVICE
DRIVER
(KERNEL

MODULE)

tux_init

tux_exit

tux_open

tux_release

tux_write

tux_read

Step 1: Implement the device driver

Step 2: Compiling the device driver Step 3: Loading the device driver

Step 4: Creating the device node Step 5: Testing the driver using shell
commands

Step 7: Hacking the driver to cause a
Kernel Panic

Step 6: Implementing a user space
program to test the driver

Step 0: Prepare a virtual machine
instance

Hands-on Activity, Step 5

Now, let’s play with our driver or test it using some shell
commands.
 a. First we will read its initial content, which should be
some garbage
 $ sudo dd if=/dev/tux bs=16 count=1
 b. Next we will write to it
 $ sudo echo “Hello tux” > /dev/tux
 c. Last we will read its updated content
 $ sudo dd if=/dev/tux bs=16 count=1

Testing tuxdriver using shell commands

Checking Kernel logs after the first testing

Putting all major steps together

DEVICE
DRIVER
(KERNEL

MODULE)

tux_init

tux_exit

tux_open

tux_release

tux_write

tux_read

Step 1: Implement the device driver

Step 2: Compiling the device driver Step 3: Loading the device driver

Step 4: Creating the device node Step 5: Testing the driver using shell
commands

Step 7: Hacking the driver to cause a
Kernel Panic

Step 6: Implementing a user space
program to test the driver

Step 0: Prepare a virtual machine
instance

Hands-on Activity, Step 6

• Let’s write our testtuxdriver.c that opens the device file and
reads & writes.

• Make sure that the driver is loaded.
• Execute HelloDriver.c’s executable.
• To check if we could write to the device, let’s use the dd (data

duplicate) command:
• sudo dd if=/dev/tux0 bs=10 count=1
• Here bs denotes block size and count denotes to number of

blocks to duplicate

How we test tux

• Open tux the first time (file position pointer reset to the beginning of the
file)

• Read 16 bytes to see its initial content (file position pointer points to end
of ramdisk)

• Open tux the second time (file position pointer reset to the beginning of
the file)

• Write "BYE for now, tux“ to overwrite the contents (file position pointer
points to end of ramdisk)

• Open tux the third time (file position pointer reset to the beginning of the
file)

• Read 16 bytes to see its current content

Header files for the user space test code

#include <stdio.h>

#include <unistd.h>

#include <fcntl.h>

#define size 16

char user_space_buf[size+1];

char user_space_buf2[size+1];

Test code for tux

int main(…) {

 int tuxfd = open("/dev/tux", O_RDWR);

 if (tuxfd == -1) { printf("Could not open tux!\n"); return 1; }

 printf("Opened tux successfully!\n");

 int numread = read(tuxfd, user_space_buf, size);

 if (numread == 0) { printf("Could not read from tux!"); return 1; }

 user_space_buf[numread] = '\0’;

 printf("Read from tux: %s\n", user_space_buf);

 printf("Let's reopen tux to move the position pointer to the beginning\n");

 // or you can implement an lseek entry point for tux and use that instead!

 …

Test code for tux (cont’d)

…

 int tuxfd2 = open("/dev/tux", O_RDWR);

 if (tuxfd2 == -1) { printf("Could not open tux!\n"); return 1; }

 printf("Let's overrite tux's contents!");

 int numwrote = write(tuxfd2,"BYE for now, tux",size);

 if (numwrote == 0) { printf("There was a problem writing to
tux!\n"); }

 …

Test code for tux (cont’d)

 printf("Let's reopen tux to move the position pointer to the beginning\n");

 int tuxfd3 = open("/dev/tux", O_RDWR);

 if (tuxfd3 == -1) { printf("Could not open tux!\n"); return 1; }

 numread = read(tuxfd3, user_space_buf2, size);

 if (numread == 0) { printf("Could not read from tux the 2nd time!"); return
1; }

 user_space_buf2[numread] = '\0’;

 printf("This is what tux has now: %s\n", user_space_buf2); printf("That's it
folks!\n");

 return 0; } // end main

Testing tux using testtuxdriver

Kernel logs after running testtuxdriver

Putting all major steps together

DEVICE
DRIVER
(KERNEL

MODULE)

tux_init

tux_exit

tux_open

tux_release

tux_write

tux_read

Step 1: Implement the device driver

Step 2: Compiling the device driver Step 3: Loading the device driver

Step 4: Creating the device node Step 5: Testing the driver using shell
commands

Step 7: Hacking the driver to cause a
Kernel Panic

Step 6: Implementing a user space
program to test the driver

Step 0: Prepare a virtual machine
instance

Hands-on Activity, Step 7

• Let’s change tuxdriver.c to introduce a memory error to observe its
side effects.

• Some suggestions to try (one by one):
• Comment out the line that calls kmalloc to cause NULL pointer dereference

(ending in a Kernel Panic/Oops, kind of a Denial of Service (DOS) attack)
• Comment out the if statements that check whether the number of bytes to be

read/written to ramdisk goes beyond the end of the buffer
• Memory out of bounds read (as in the case of the HEARTBLEED vulnerability,

sensitive data may be leaked)
• Memory out of bounds write (this may be exploited for Remote Code Execution!)

• Recompile the driver each time and test your code!
• Happy hacking!

Outline

• What is this workshop about?

• What is a device driver & how do drivers work in the Linux
Kernel?

• Which system APIs get involved?

• Hands-on Activity: Writing & Testing a Character-special Device
Driver

• Wrap-up

• Questions & Answers

Resources

• Writing Linux Device Drivers book by Jerry Cooperstein
• Writing Linux Device Drivers: a guide with exercises - Volume 3 | Guide books

| ACM Digital Library

• Linux Device Drivers, 3rd edition, by Jonathan Corbet, Alessandro
Rubini, and Greg Kroah-Hartman
• Linux Device Drivers, Third Edition [LWN.net]

• The Linux Documentation Project (tldp.org)

• The Linux Kernel Archives

• Linux source code (v6.5) - Bootlin

https://dl.acm.org/doi/10.5555/1803705
https://dl.acm.org/doi/10.5555/1803705
https://lwn.net/Kernel/LDD3/
https://tldp.org/
https://www.kernel.org/
https://elixir.bootlin.com/linux/latest/source

Acknowledgements

• Thanks to my students who have applied the presented content
as an in-class activity in my Advanced Systems
Programming course, which is offered as an online course
(undergrad & grad sections) at the University of Florida.

• Thanks to those students who have participated in an earlier
version of the Kernel Hacking Workshop at the University of
Florida in Spring 2015 & 2017.

• This work has been partially funded by my NSF CAREER Award
#CNS-1942235.

THANK YOU

	Slide 1
	Slide 2: LINUX KERNEL HACKING WORKSHOP Tuba Yavuz Associate Professor ECE Department FICS & Nelms Institute University of Florida tuba@ece.ufl.edu
	Slide 3: Outline
	Slide 4: Why the Linux Kernel?
	Slide 5: Why hacking the Linux Kernel?
	Slide 6: Importance of system programming
	Slide 7: Research and Educational Interest
	Slide 8: Outline
	Slide 9: What is an Operating System (OS)/Kernel?
	Slide 10: How do User Procs. & Kernel communicate ?
	Slide 11: What is a device driver?
	Slide 12: What is a device in the Linux Kernel?
	Slide 13: Device Drivers in the Linux Kernel
	Slide 14: Device Drivers & Subsystems in the Linux Kernel
	Slide 15: Outline
	Slide 16: Writing a device driver
	Slide 17: Entry points of a kernel module
	Slide 18: Entry points of a device driver
	Slide 19: APIs used in a character-special device driver
	Slide 20: Printing messages to the kernel logs
	Slide 21: How printk works
	Slide 22: How to check the current printk level
	Slide 23: How to change the current printk level
	Slide 24: Allocating dynamic memory in the kernel
	Slide 25: Copy data to & from user space
	Slide 26: Virtual File System (VFS) data structures
	Slide 27: Major & minor numbers
	Slide 28: Reserving device (major & minor) numbers
	Slide 29: Creating device nodes
	Slide 30: Registering a character-special device
	Slide 31: Outline
	Slide 32: This is what we are going to do…
	Slide 33: Putting all major steps together
	Slide 34: Hands-on Activity, Step 0.a
	Slide 35: Hands-on Activity, Step 0.b
	Slide 36: Hands-on Activity, Step 0.c
	Slide 37: Putting all major steps together
	Slide 38: Hands-on Activity, Step 1
	Slide 39: Linux header files to include
	Slide 40: Constant & Global Variable Declarations
	Slide 41: Initialization of File Operations
	Slide 42: What tuxdriver does at load time..
	Slide 43: What tuxdriver does at unload time..
	Slide 44: What tuxdriver does on opening/closing a tux dev
	Slide 45: What tuxdriver does upon writing on a tux dev
	Slide 46: What tuxdriver does upon reading from a tux dev
	Slide 47: Putting all major steps together
	Slide 48: Hands-on Activity, Step 2.a
	Slide 49: Hands-on Activity, Step 2.b
	Slide 50: Hands-on Activity, Step 2.c
	Slide 51: Hands-on Activity, Step 2.d
	Slide 52: Compiling tuxdriver on the VM
	Slide 53: Putting all major steps together
	Slide 54: Hands-on Activity, Step 3
	Slide 55: Installing tuxdriver on the VM
	Slide 56: Putting all major steps together
	Slide 57: Hands-on Activity, Step 4
	Slide 58: Creating tux device node on the VM
	Slide 59: Putting all major steps together
	Slide 60: Hands-on Activity, Step 5
	Slide 61: Testing tuxdriver using shell commands
	Slide 62: Checking Kernel logs after the first testing
	Slide 63: Putting all major steps together
	Slide 64: Hands-on Activity, Step 6
	Slide 65: How we test tux
	Slide 66: Header files for the user space test code
	Slide 67: Test code for tux
	Slide 68: Test code for tux (cont’d)
	Slide 69: Test code for tux (cont’d)
	Slide 70: Testing tux using testtuxdriver
	Slide 71: Kernel logs after running testtuxdriver
	Slide 72: Putting all major steps together
	Slide 73: Hands-on Activity, Step 7
	Slide 74: Outline
	Slide 75: Resources
	Slide 76: Acknowledgements
	Slide 77
	Slide 78

